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Abmract--A multilayered salt/mica speciraen with embedded strain markers was shortened to produce a fold and 
the distribution of strain was subsequently mapped out over the profile plane. On a fine scale the initial foliation, 
which is parallel to the undeformed layers, is folded by tight kinks to produce two new foliations; one is defined by 

"the preferred orientation of kink boundaries and the other by the preferred orientation of (001) of mica. In the hinge 
region of the fold the first of these new foliations is parallel to the local 2t22-principal plane of strain whereas the 
preferred orientation of mica is bimodal and is symmetrical about the ~t).2-plane. Elsewhere the two n e w  

foliations are not parallel to the principal plane of strain and angular divergencies of up to 30-35 ° are measured. If a 
March model with initial random mica orientation is assumed for the development of mica preferred orientation 
then the correct value of strain is predicted but the orientation of the principal plane of strain can be grossly in error. 
A theoretical analysis of the angular relationships to be expected between kink boundasies and the 2t22-plane of 
strain confirms that for the type of geometries experimentally developed, large divergences of up to 35 ° should be 
common. In rocks where the foliation has developed by processes similar to thoa  recorded here, larSe angular 
divergencies b e t ~  the foliation and the 2t,12-principal plane of strain should be expected as the rule. 

INTRODUCTION Many authors (for example, Darwin 1846, Sorby 1853, 
Harker 1885, Hoeppener 1956, Plessmann 1964, Talbot 

THE PAST 15 years has seen an emphasis on investigating 1965, Williams 1972, 1976, 1977, Etheridge & Lee 1975, 
the distribution of strain in deformed rocks and in relating Means 1977, Knipe & White 1977) have pointed out that 
this distribution to the types of structures observed in slaty cleavage does not normally consist simply of a 
various parts of folds. From many of these studies, there penetrative preferred orientation of mica flakes parallel to 
has emerged the general contention that foliations such as the cleavage plane. In general, a discontinuous structure 
slaty cleavage and schistosity are parallel to a principal has developed consisting of domains of strongly and 
plane of the finite strain ellipsoid, normal to the principal weakly deformed material of domains of slightly different 
axis of shortening (see for instance, Ramsay & Graham mineralogy, of fine-scale metamorphic differentiation 
1970, Siddans 1972, Wood 1974, Wood et al. 1976~ This zones, or of combinations of these featur~ Similarly, 
of course supports the much earlier view expressed by Sorby crenulation cleavage and schistosity may be defined by 
(1853) but (see Bayly 1974, Williams 1976, 1977, Means material discontinuities or compositional variations 
1977, Knipe & White 1977) some doubts have been cast rather than by the simple regular distribution of oriented 
on the general truth of this relationship. The objections micas. The fact that these foliations are primarily defined 
raised are more specific than those voiced in the past by by discontinuities and domains means that for general 
authors such as Becker (1893) who claimed that slaty non-coaxial deformation histories, it is not possible for the 
cleavage formed parallel to a plane of maximum shear foliation to remain parallel to the 2a22-principal plane 
strain, of strain throughout the deformation history, although 

The objections centre around the observation that it is the observation is true that many material planes must 
not possible, in a general non-coaxial deformation his- rotate towards this principal plane of strain during 
tory, for a plane of material particles to remain parallel to increasing deformation. The exception to this argument 
the 2122-plane of strain throughout the deformation would arise ifdiffusional or mechanical adjustments could 
history. (In this paper 21, 22 and 23 are the maximum, take place at a sufficiently fast rate that the foliation 
intermediate and minimum principal quadratic elong- remained parallel to the 2122-plane, no matter whether 
ations.) Only in coaxial deformation histories is this the deformation history was coaxial or not. 
strictly possible (see Williams 1976). Related to this exception is the idea that the foliation 
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may not be parallel to a principal plane of strain on a fine salt-mica layers acquire a strong foliation parallel to layer 
scale but that there is nevertheless something inherent in boundaries during compaction. It is defined by preferred 
the mechanism of formation of foliations such as slaty orientation of mica flakes and the long axes of flattened 
cleavage that ensures that the foliation is always parallel salt grains and grain aggregates, as described more fully in 
to the principal plane of mean strain no matter what the Williams et al. (1977). 
deformation history. This argument admits that there Following compaction, the layer thicknesses were mea- 
may be small domains of differing strains so that the sured at the centre and ends of each layer and thirty one 
deformation is inhomogeneous on a fine scale and there evenly-spaced marker lines were applied to the broad 
may even be shear displacements parallel to the foliation sides of each layer by rubber stamp. The marker lines run 
on this scale; locally, the foliation is not coincident with a parallel to the intermediate dimension of each layer, and 
principal plane of strain, but so the arguments go, on a parallel to the eventual fold axis. One side of each layer 
scale where the deformation can be considered to be was marked with red ink and the other side with green ink. 
homogeneous, the foliation would always remain parallel The layers were stacked to form a specimen such that each 
to the Zt22-principal plane of mean strain, there being interface between layers carried red markers attached to  
something (as yet undefined) in the mechanism of for- one layer and coincident green markers attached to the 
mation that ensures that this is so. other layers. This made it possible in the folded specimens 

Foliations defined by the boundaries of domains in to recognize sites of interlayer slip (from separation of the 
which the strain is different include crenulation cleavage red and green markers), and to calculate intralayer strains 
as the obvious example but many slaty cleavages are of free of the effects of interlayer slip. 
this type also; in fact the difference between crenulation Once marked and stacked, the twelve layers comprising 
cleavage and many slaty cleavages is apparently only one a specimen were fitted into a pre-cast, thick lead jacket, 
of scale (see Knipe & White 1977, Weber 1981). Other mounted between oversize pistons, and enclosed in a 
types of domainal slaty cleavage, especially those defined rubber jacket. The arrangement of pistons, specimen and 
by fine-scale metamorphic differentiation are relevant here jackets is illustrated in Means (1975), with the slight 
also. The above argument is particularly relevant to the m ~ t i o n  that we used thin lead pads at the specimen/ 
foliation described in this paper and is considered further piston interfaces in the present work, to promote large 
in the discussion section where it is shown that it requires strain of the specimen along its entire length. 
very special geometrical conditions for the ~t,].2-principal The deformation was carried out at 103 MPa confining 
plane of mean strain to coincide with the domain pressure, room temperature and at a strain rate of 1.2 x 
boundaries that define fofiations of this type. 10-*s - t .  The specimen as a whole was shortened by 

Thus, if it happens to be true that foliations are strictly about 50%. It extended principally in a direction normal 
parallel to the principal plane of mean strain for all rocks, to the original plane of the layering, that is perpendicular 
then this implies rather special features of the mechanism to the hinge lines of the folds. There were also substantial 
offoliation development or ofthe deformation histories in extensions, up to 20%, parallel to the hinge lines of the 
rocks such that nearly coaxial histories are common, and folds, especially in the centre of the specimen. The two 
it is important to resolve the issue. As a step toward exterior profile planes of the specimen thus bulged out 
resolution we have produced axial-plane foliatiom exper- symmetrically after deformation. From the overall sym- 
imentally such that the distribution of strain in various metry of the deformed specimen it was inferred that the 
parts of a folded specimen is accurately known. In this central profile plane of the folded specimen should 
paper we compare the orientation of the foliation with the contain the local ~.1 and 43 directions at all points in the 
known distribution of strain in a representative specimen, profile plane. The specimen dimensions parallel to the fold 
In a subsequent paper (Means et al. in press) the axis were measured at fifteen points distributed over the 
orientation and intensity of a foliation is discussed in profile faces and the specimen was sawn in two along the 
terms of strain history, central profile plane, for investigation of the two- 

dimensional strain field in this plane and associated 
foliations. 

EXPERIMENTAL PROCEDURE 

The specimen is a twelve-layer assembly of salt and STRAIN DISTRIBUTION 
salt-mica layers. There are two salt layers in the middle 
and five salt-mica layers on either side (Fig. 1). Individual The marker lines stamped on the layers intersect the 
layers were made by dry compaction of powders in a central profile plane in an array of marker points ( Fig. la). 
rectangular pellet press at a pressure (friction neglected) There are in principle 744 points and they define the 
of 360 MPa. The resulting slabs of material were 7.8 cm comers of 720 small triangular regions for each of which 
long, 1.0 cm wide, and of various thicknesses of the order the two-dimensional strain can be calculated. In fact a few 
of 0.25 cm. The salt is a table salt ground to reduce the of the points are missing, on account of incomplete 
coarser particles to about 100/,m. The mica is a synthetic printing by the rubber stamp or subsequent destruction 
fluorine phlogopite with larger flakes about 500/~m in by deformation, so that strain for a few triangles could not 
diameter. This is the same salt-mica mixture used by be determined. 
Means & Williams (1972) and Williams er aL (1977). The The first step in the strain determinations was assign- 
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ment of coordinates to each marker point in the deformed Ac~ were calculated, as well as the shear strain ~^~, from 
and undeformed states. For the deformed state this was which ~B, ~ and ~ s  were obtained, where 
done by digitizing a map of the markers prepared from an ,~B = 1/2Aa 
enlarged version of Fig. l(a), with binocular inspection of A ~  = 1/~cD (1) 
the sawn surface to distinguish the red from the green 
spots. Coordinates in the undeformed state could not be Y~B = YA~/~^B. 
measured directly from the undeformed specimen because 

These three quantities are sufficient to define two in- the specimen was not in its final 'undeformed' con- 
variants of the finite strain, I and II, where: figuration (i.e. the configuration immediately prior to 

layer-parallel shortening) until it had been placed in its I = 2~e + ~ 
lead jacket and subjected to confining pressure. The 
confining pressure collapsed the lead jacket tightly (2) 
around the specimen and welded the layers into a solid II = (2~B) (2~V) -- (~B) 2. 
block. Since the layers as compacted and measured were Finally, the magnitudes of the principal quadratic elong- 
1-6°,o thicker at their ends than at their centres, some ations were found from the invariants by 
small deformation of the layers must accompany press- 
urization. The assumptions made in calculating the 2 
undeformed coordinate are (1) that the middle interface 21 = I - (I 2 - 4II) 1/2 
between the two salt layers became planar during press- (3) 
urization and (2) that the spacing of markers measured 2 
parallel to the middle interface was not affected by 2a = i  + (I 2 4II) 1/2 
pressurization. These assumptions are consistent with 
results of tests in which a specimen was brought up to 
pressure and back down again without further defor- (Ramsay 1967,p. 82).The orientation of the21 direction is 
mation. Figure l(b) shows the calculated undeformed obtained from 
shape of the specimen along with a profile view of its 
deformed shape. 0' = sin- 1 __- (4) 

Calculation of the principal strains )-1 and 23 assumes 
that the strain field is homogeneous on the scale of each 
triangle. It proceeds by use of the fact that if the extensions where 0' is the angle in the deformed state between the line 
are known for two lines that are perpendicular in the AB and the AI direction. 
deformed state, and the shear strain is known for one of The calculations were carried out for the four sets of 
them, the two-dimensional strain is fully defined, The two triangles shown in Fig, 3. This is a redundant procedure 
lines used here,for each triangle were AB and CD (Fig. 2). since calculations in the first and second sets of triangles 
AB is a line connecting two strain markers on either side or in the third and fourth sets fully define the strain field. 
of a layer that were opposite one another in the unde- However, it is useful because differences in the two sets of 
formed state. CD is a line perpendicular to AB in the results provide a check on estimated errors in the strain 
deformed state, with length equal to the altitude of the 
triangle, where AB is the base. / /  

Using the deformed and undeformed coordinates of ./e 
markers A, B and C, the quadratic elongations 2 ~  and / 

--C.~.A .... I [ , V/11/ 

o I /X', 
/ / / 

(o) / (b) 

Fig. 2. Undeformed (a) and deformed (b) triangles. The ling drawn in the centre of the deformed triangle in (b) shows the 
calculated orientation of the direction of ).r 
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Fig. 3. A portion of one of the layers, showing two alternative ways of subd/vid/nll it into triangular regions for the strain 
calculations. Trian#es of sets I and 2 were used for subsequent plots in this paper. 

calculations, as discussed in the next section. The results where all three markers were readily identifiable in the 
that follow are for c, alculations in the first and second sets deformed state. 
of triangles (Fi& 3a) unless otherwise noted. Figure 5 is a contour map of the magnitude of the 

Figure 4 is  a plot showing the deformed array of greatest-principal strain; plotted as the square root of),  t. 
markers and the local direction of ~t for each triangle Following Truesdell & Toupin (1960, p. 255) we refer to 

the square root of a quadratic elongation as a stretch (see 
also Hobbs 1971, p. 334; Means 1976, p. 134). The stretch 
is the ratio of the length of a line in the deformed state to 

o o o • o ~  o o o o o 

° .  \, II II \/ ~\ "1 II l/ /. / o, 
. o - i . \~. o \~\, ~I \ i  II l, l, I °,o / " "  

I | 

I cM. Fig. S. Contour map showing magnitudes of ~/~.t {numbered in key) in 
Fig. 4. Calculated orientations of the ~t direction in the central profile the central profile plane. A, 13, C and D are areas studied in greater detail 

plane of the specimen. (Circles are marker points of Fig. la). later in the text. 
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its length in the undeformed state, and the stretches markers, no strain quantity is shown in Fig. 4 or other 
indicated in Fig. 5 thus show the lengths of the long axis of plots. 
a strain ellipse derived from a circle of unit diameter. The errors in marker locations lead to maximum 

uncertainty of + 10°/0 in lengths calculated across the 
layers and to maximum uncertainty of + 20~ in lengths 

Calculation of the principal strain ~2 and volume changes calculated parallel to the layers (where the spacing of 
markers is commonly smaller and the percentage error 

Figure 6(a) is a map of the deformed specimen showing correspondingly higher). The calculated values of the 
the fifteen points at which its thickness was measured principal stretch ~ which is essentially a length across 
parallel to the fold axis. From these measurements a the layers, are therefore expected to be in error by up to 
thickness was assigned to each triangle by linear in- about + 10o/0 and the calculated principal stretch 
terpolation between the three measured thicknesses that which in the worst cases corresponds to a length parallel 
were closest to each triangle. The intermediate principal to the layers, may be in error by up to + 20%. These errors 
strain was then calculated for each triangle, taking the in the principal stretches correspond to errors of + 20% 
initial thickness of the specimen as uniform and equal to and + 40% in the principal quadratic elongations ~.~ and 
1.9 cm. The resulting values of the intermediate principal ;~3- With such errors possible in the quadratic elongations, 
strain, expressed as stretches, are contoured in Fig. 6(b). the maximum errors in ~ the calculated orientations of the 
The volumetric strain or dilation A is calculated from ;,~ or ~3 directions within the areas we want to consider in 

A = I - ~ ~2~3 (5) detail, are +_ 5 °. 
It is possible to check these estimates oferrors in several 

and is illustrated in Fig. 6(c). ways. First, it can be noted that the ~ directions in Fig. 4 
tend to vary smoothly from one triangle to the next in a 

Errors in strain determinations given layer. Where wild fluctuations are seen, i.e. near the 
centre of the second-to-top layer in Fig. 4, they cor- 

The main source of error in the two-dimensional strain respond to areas where the strain is small and the micro- 
calculated for each triangle is uncertainty in the measured su'ucture indicates that the strain field is heterogeneous 
positions of the markers in the strained state. The markers on the scale of a single triangle (e.g. the foliation is kinked 
have finite size and they are thus distorted by the on a scale comparable with the size of a triangle). 
deformation. Some are quite smeared out as suggested in Second, strain calculations done in overlapping tri- 
Fig. 1 (a). However, the situation is not as bad as the black angles of the four sets can be compared with one another. 
and white photograph suggests. When the photograph is Thus, for example, ff region ABEC in Fig. 3 were 
compared with the original specimen surface, viewed homogeneously deformed and if the positions of the 
through a low-power microscope, it is possible to resolve markers ABEC were measured without error, the strains 
most of the smeared out black markers in the photograph determined for triangles 1, 2, 3 and 4 would be exactly 
into separate red and green parts and to locate the centre equal. Departures from exact equality would reflect 
of each separate part within _+ 0.5 mm on a 20 x 25 cm departures from homogeneous deformation and/or errors 
enlargement of the photograph. For some markers this in positions measured for the markers and, thus, provide 
was not possible, because they were too severely deformed an independent indication of the maximum possible 
or missing altogether, and for triangles involving such errors arising from bad measurements. This comparison 

' ° ' " iiii ? 
o / "~ o 

o 

o 
o o o 

(a) (b) (c) 

Fig. 6. Profile views of the specimen showing aspects of the three-dimensional strain calculations. (a) Fifteen points where the 
dimension of the specimen parallel to the fold axis was measured, and at which the principal strain ~/R2 is most accurately 
known. (b) Contours showing the calculated values of q, l  2 elsewhere: shaded, ~/,~z > 1.2 parallel to the fold axes; small dots, 
~/,t 2 = 1.15-1.2; large dots, ~/~2 -- 1.1-1.15. (c) Extreme values of volumetric strain. Crosses: points at which calculated 

volume decrease exceeds 20%. Circles: points at which calculated volume increase exceeds 10%. 
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was made for the 120 triangles of sets 1, 2, 3 and 4 High strain areas (maonitude o f x /~ t  > 1.5) 
comprising the fourth layer from the top of the specimen 
in Fig. l(a). For any given set of four triangles the In the high strain area of the fold closure on the 
maximum departure of ~ was + 30% from its value, concave side of the salt layer, the initial mica foliation is 

folded into a series of asymmetric, or locally symmetric, and the 2t directions were off the mean value for any 
group of four triangles by a maximum of ± 10 °. Consider- kinks. The kinks generally have interlimb angles between 
ing that part of these variations is certainly due to 30 and 60 °. The symmetric kinks are close to the trace of 
inhomogeneity in the deformation, this is considered to the axial surface and the asymmetric kinks have the sense 
confirm the estimates made earlier of the accuracy of the of asymmetry of normal parasitic folds. The kinks occur 
strain measurements, in particular the statement that 2t on all scales from folds involving tens of mica grains to 
orientations should be good to ± 5 ° for each individual intra-crystalline structures. Their axial surfaces define a 
triangle, divergent fan with respect to the larger fold. The asym- 

Where the gt orientation is read from Fig. 4, not for metric kinks have long limbs that are several times as long 
individual triangles, but for groups of adjacent triangles as their short limbs. This, combined with their tightness, 
with concordant ~.t orientations, the ~.t direction is most means that they define a strong orientation maximum for 
accurately defined, perhaps to ± 3 °. (001) of mica which has the normal bedding-cleavage 

Errors in mzamremmt of the dinmmom of the g ~ i m m  relationship of an axial-plane foliation. 
parallel to the fold axis are considered to be ± 5% and this In the high strain areas on the convex side of the salt 
leads to errors of similar magnitude in the calculated layer, the initial foliation is deformed in much the same 
values of x/~2 When this error is combined with errors of manner as on the concave side but the kinks are less tight. 
± l~/oan d ± 20g/g for x / ~  andx/~a, respecti~ly, error s The interlimb angle tends to be around 60 ° and the 

difference in the length of limbs is not as great. The axial 
of up to 40°/0 are possible in the calculated volume changes surfaces of kinks define a convergent fan with respect to 
and volumetric strains, the larger fold. 

In view of the high compaction of this experimental The new foliation developed in this specimen has all of 
material prior to deformation, it is not considered that the the characteristics of the foliation'described in Williams et 
large dilations given in Fig. 6(c) are ~ ;  dilations of a/. (1977). 
perhaps 5-10°/0 would seem more reasonable. The large The orientations of the axial surfaces of small kinks are 
magnitudes of the calculated errors in the dilation provide plotted in Fig. 7(a); these orientations are compared to 
a possible explanation, the relevant orientations of the ~l ),z-P lane of the finite 

strain ellipsoid (taken from Fig. 4), in Fig. 7(b). Departures 
in orientation of up to 32 ° between a kink boundary and 
the local 2t22-plane are noted especially within the 

MICROFABRIC higher strain areas on the convex side of the fold. As is to 
be expected, in the symmetrical environment of the fold 

The initial foliation in the specimen is modified during hinge there are no angular departures between the kink 
the deformation to produce a new preferred orientation of boundaries and the 2~ 2z-planes; the distribution of 
mica and salt aggregates. The p roc~  structures departures is systematic with respect to the fold. 
produced depend on the amount of straln locally and this A little more detail is given in Fig. 8 which shows 
in turn depends on position relative to the fold. The histograms ofkinkplane orientations for the four regions 

around the fold labelled A, B, C and D in Fig. 5. In regions 
description below is in terms of the various areas de- A, B and D the mean orientation of kink planes is parallel 
llneated in Fig. 5. to the local orientation of the 2~ A2-plane of the finite 

strain ellipsoid within the accuracy of measurement, 
Low strain areas (magnitude ofx /~ t  < 1.5) although it is important to note that individual kink 

planes in these regions need not be parallel to the local 
In the regions of relatively low strain close to the 2t22-plane. Within area C, however, a divergence of 

deforming pistons and in the fold closure on the convex approximately 15 ° between the mean orientations of kink 
side of the folded salt layer, there are two sets of kinks in planes and the local X t';-2-P lane is evident and local 
the initial schistosity. They are fairly open kinks with axial divergences of up to 28 ° are developed. 
surfaces approximately parallel to the piston faces and to Histograms showing the frequency distribution of 
the axial surface of the large fold. There are also less angles between the initial foliation and kink planes as 
numerous kinks with their axial surfaces approximately shown in Fig. 9 for the four areas A, B, C and D of Fig, 5 
parallel to bedding. These are the kinks formed during and details of the kink geometry within these areas are 
compaction of the specimen (see William~ et al. 1977). summarized in Table 1. 
They are still tight structures but are not as tight as in the 
undeformed starting material. This is due to the shorten- Conjugate shears 
ing that has occurred during deformation parallel to their 
axial surfaces. Locally, these two generations of folds Some regions of the fold are traversed by shear zones 
cause complicated interference patterns, that form a conjugate pair. No actual intersections of 
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Fig. 7. (a) Orientations of axial surfaces of kinks in the deformed salt/mica regions and of foliation in the central salt layer. (b) 

Measured angles between the traces of kink boundaries or salt foliation and ~122-principal planes of strain. 

these zones are observed ; as they approach one another, Preferred orientation of mica 
one or both die out. These zones are defined in part by 
dark hairlines that are commonly stained by the red dye Some detail of the preferred orientation of mica is 
used for the strain markers. The red dye, in particular, shown in F'~ I0 where histograms of the orientations of 
continues to diffuse out from the central red line of long axes of mica grains are given for the four regions A, B, 
application for several days after imprint forming a light C and D of Fig. 5. In regions A, B and C, a unimodal 
but noticeable smear twice the diameter of the initial distribution of micasisdeveloped reflecting the dominant 
imprint. The fact that this dye diffuses relatively very large long limb orientation of the kinks. The mean orientation 
distances along the shear zones, means that these zones of micas in these three regions is at 31, 27 and 35 °, 
are regions of great permeability and are presumably respectively to the local orientations of the ,~ ,~-plane of 
associated with relatively large dilations. More g~nerally strain. Within region D, in the hinge of the main fold, the 
however, the shear zones are defined by a difference in the distribution of micas is bimodal and the 21 ,~2-plane of the 
orientation of the foliation, they constitute a small open strain ellipsoid bisects this distribution. 
flexure. As the foliation enters the zone, it swings towards, 
parallelism with the zone and some individual micas 
actually achieve parallelism. Then, as the foliation era- DISCUSSION 
erges from the other side, it curves back into its normal 
orientation. The sense of displacement parallel to these Within the salt-mica layers, two distinct planar fabric 
zones as indicated by the sense of shear of the initial elements have been imposed by the deformation. One 
foliation, is consistent with them being a system of consists of the axial surfaces of small kink-like folds and its 
conjugate shears related to the overall shortening of the distribution is presented in Fig. 7. The other consists of a 
specimen, preferred orientation of (001) of micas produced by tight, 

generally asymn~tric, kinking of the initial foliation. The 
Preferred orientation of salt in salt layer distribution of this preferred orientation is shown in Fig. 

10. Naturally, the orientations of these two types 0f planar 
Within the pure salt layer, there is strong preferred elements need not coincide, the angle between them 

dimensional orientation of flattened aggregates of salt. varying between 0 and c. 30 °. The important point 
The long axes of these aggregates form a convergent fan illustrated by Figs. 7 and 10 is that except for the 
with respect to the large fold and their orientations have immediate hinge area of the fold, the orientation of either 
been plotted on the salt layer in Fig. 7(a) where corn- fabric element does not necessarily coincide with the 
parison with Fig. 4 shows that these orientations are orientation of the Al~2-principal plane of strain. The angle 
parallel to the orientation of the )+122-plane of the strain between the axial surfaces of the kinks and the A 1 ,~2-plane 
ellipsoid at each point in the layer (Fig. 7b). can be as great as 30 ° whereas the angle between the mean 
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Fig. 8. Histograms showing the preferred orientation of kink boundary traces in the at©as A, B, C and D of Fig. 5. The trace of 
the ~.i :.,-principal plane of strain is also shown for each area. 

preferred orientation of (001) and the 2~2z-plane is crenulation cleavages and in slaty cleavage defined by 
generally greater and can be as large as 35 °. These small-scale crenulations (Knipe & White 1977, Weber 
discrepancies are far greater than the errors  to be 1981) or by fine-scale metamorphic differentiation, then 
expectedintheorientationofthe2~,!.z-planeasdiscussed discordances of 30 ° should not be considered unusual. 
earlier. The reason that no fabric element in the salt/mica 

Thus, in the situation described by Williams et al. (1977) aggregates coincides with the 2t22-principal plane of the 
where recrystallization of micas previously oriented by strain is that the deformation is inhomogeneous on a fine 
tight folding is the mechanism of preferred orientation scale and the bulk strain is the result of combining the 
development, discordances between the foliation and the strains in different kinked domains within each one of 
2~ 2z-plane of 35 ° can be expected. On the other hand, if which the strain is homogeneous. The strain in each small 
the foliation is defined by domain boundaries as it is in domain can be thought of as the combination of a shear 
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Fig. 9. Histograms showing the frequency of occurrence of kink angles ~ ,  ~ in the areas A, B, C and D of Fig. 5. These angles 
are defined in Fig. 11. 

strain parallel to the domain boundary and a shortening preferred orientation with the ~x~2-principal plane on a 
normal to the domain boundary (together with a volume scale where many different domains are combined to 
change that also may be different from one domain to the make a homogeneously strained area on a larger scale. 
next). Thus, it can only be in special geometrical situations The purpose of the following discussion is to investigate 
that the domain boundary or the preferred orientations of the ways in which the strains in an array of homo- 
mica within a domain is parallel to the local ;qg2- geneously deformed domains combine to produce a 
principal plane of the strain in that domain. It follows then homogeneously-strained region on a scale larger than the 
that it can only be a special geometrical situation that domains and to investigate the way in which the angle 
leads to parallelisms of domain boundaries or of mica between the domain boundaries and the 2~A2-principal 

Table 1. Geometry of kinks in areas A B C D of Fig. 5 

Mean Mean Mean Mean 
kink angle in kink angle in volume fraction volume fraction 
domain ~t(°) domain fi(°) of ~ of 

Area* ~ '  cr ~'~ o f "  f "  

A 20.7 11.1 16.7 7.5 0.83 0.17 
B 33.2 19.3 30.2 19.3 0.72 0.28 
C 25.9 11.0 23.0 10.7 0.32 0.68 
D 21.6 10.9 19.3 9.4 0.50 0.50 

* 139 measurements in area A ; 99 measurements in area B ; 141 measurements in area C and 145 
measurements in area D. 

(For definitions of domains u, ~ and of ~ *, ~b" see Fig. 11) 
a is standard deviation. 

SG 4:4 - c 
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plane of strain is influenced by such variables as local AB, is inhomogeneously deformed to produce a series of 
changes in dilation, shortening and shear strain. The kink folds, the kink boundary normals being inclined by # 
general theory is developed in the Appendix and as such to ab in the deformed state; ab is now the enveloping 
sets the scene for discussion of more complicated and surface for the kink folds. The geometry ofthe kink system 
general deformations (such as crenulation cleavage and is defined in Fig. 11 ; the parallelogram abcd is divided 
metamorphic differentiation) than are developed in this into two types of domain, • and //, within which the 
experimental study, foliation has more or less constant orientation. ~ and ~P 

are the kink angles in these domains a n d f  ~ a n d f  p are the 
Relationship between kink boundary and principal plane of volume fractions of the two domains. 

strain It is shown in the appendix that the angle 6 between the 
During the deformation, the small rectangle ABCD domain boundaries and the A t A2-plane of mean strain is 

outlined by ink markers is distorted to become the given by 
parallelogram abcd as shown in Fig. 11. On a fine scale sin 2~ - 2bt2b22 (6) 
within this parallelogram; the foliation, initially parallel to ~/['(a~t + b,22 + b2t2)2 - -  4q2112 b2212 

/ 
V* "O'I. 

, , ~  5"1. ~PI. 

C ~ 

IX, P \ 

Fig. I0. Histograms showing the preferred orientation of mica (001) traces in the areas A, B. C and D of Fig. 5. The trace of the 
~-i ~.z-principal plane of strain is also shown for each area. 
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Fig. 11. (a) Undefonned uluare with initial foliation parallel to AB. (b) and (c) Deformed parallelograms with kinked domains 
and ~8 developed on a fine scale. The kink angles in each of these domains are ~b = and ~b P, respectively and their widths are d = and 

d ~. The kink boundary normals are inclined at 0 to the enveloping surface ab. 
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Fig. 12 (a). Variation of the angle, ~, between the kink boundary and the A t ~-principal plane of strain with change i n f  ~, the 
volume fraction of domain =. The variation is shown for three values of the shortening normal to the kink boundary, a z z  = 0.1, 
0.5 and 0.9 .  For each case the initial angle, @, between the foliation and the normal to the kink boundary is 20 ° and the kink 
angle is 30 ° in both domains. The deformation is isochoric. (b) Initial undeformed square and two extreme deformations of that 

~ua re  corresponding t o f  = = 0.1 a n d f  = - 0.9 and a z z  = 0.5 in (a), (points A and B). 
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where responds to a22 ---- 0.5 where an initial square ABCD (in 
which the side AB, parallel to the initial foliation, lies at 

b12 = a ] z f % o t  dp~+ aPz2f~cot ~b p -  all  tan @ (7) 20 ° to the normal to incipient kink boundaries) is 
shortened 50% normal to X Y as it undergoes a homo- 

and geneous simple shear parallel to X Y. The parallelogram 
Abxcldl corresponds t o f  ~ = 0.1 (point A in Fig. 12a) 

b22 = a]2f" -t- a~2f p. whereas Ab9c9d 9 corresponds t o f  ~ = 0.9 (point B in Fig. 

Here, axl, a22 are the stretches parallel to and normal to 12a). Intermediate values of f~ would correspond to 
the domain boundary and O is the angle in the undeformed parallelograms intermediate between these two. 

The sequence of deformations corresponding to the a22 state between the normal to the foliation and the plane of 
material particles that will become the domain boun- = 0.9 curve in Fig. 12(a) are shown in Fig. 13forf~ = 0.1, 
dary. The superscripts refer to domains ~t and ft. 0.5 and 0.9 together with details of the kink geometry and 

For 6 to be zero, that is, for domain boundaries to be the orientation of the strain ellipses. These deformations 
parallel to a principal plane of strain, correspond closely to many developed in the experimental 

s p e c i m e n .  
b~2b22 = 0 (8) In Fig. 14, three diiferent situations are contrasted. 

i.e. [a ~,.fffi cot ~ ~ + a ~zf  p cot ~ p Figure 14(a) is a profile of the fold showing, in summary 
form, the distribution of strain across the fold as de- 

-a l~  tan O] [a]2f~+ a~2f~  = 0 (9) termined from the distortion of marker triangles. In Fig. 
which is not particularly illuminating. However, if we take 14(b) the assumption is made that the foliation defined by 
the a22's in ~ and/] as always positive and non-zero then domain boundaries is everywhere parallel to the 2~ 22- 
the condition for 6 to be zero becomes principal plane of strain and the inferred orientations of 

the traces of these planes is plotted. For the most part this 
a]~.f, cot O~+aP22fPcot OB = axl tan O. (10) assumption gives the correct answer within _+ 5 ° but 

The trivial case where this is true is for an isochodc locally errorsof25 ° are developed. Much larger errorsare 
deformation in each domain with equal volume fractions possible at least in principle. 
for domains ~ and t ,  with ~ -- - ~P and O -- 0 °. In Fig. 14(c) the assumption is made that the preferred 

Otherwise (I0) is the general condition required for a orientation of (001) of mica is everywhere parallel to the 
domain boundary to be parallel to the 2~ 22-plane ofmean 2t22-principal plane of strain except where bimodal 
strain, distributions are developed when the 2~ 2~-principal plane 

An example of the variation of 6 for various volume of strain is assumed to bisect the smallest angle between 
fractions of the domains is given in Fig. 12(a) for O =, 20 °. the two preferred orientations of (001) of mica. Also 
In these examples ~ ~ = - ~ p = 30 ° and the shortening shown in Fig. 14(c) is the value of~/2 x calculated assuming 
normal to the domain boundary is equal in adjacent that the March model is responsible for the mica preferred 
domains. The deformation is isochoric. This corresponds orientation and that the initial mica preferred orientation 
to symmetrical kinking in the sense that the axial plane was random. It can be seen (cf. Figs. 14a & c) that the 
bisects the kink fold. The following results may be read March model utilizing this assumption gives about the 
from Fig. 12: right strain magnitude but this result seems to be 

(i) As is to be expected, with increasing shortening fortuitous since kinking of an initial strong preferred 
normal to the domain boundary the overall values of 6 orientation is the mechanism of preferred orientation 
become smaller. Thus, for 5~/o shortening normal to the development rather than passive rotation of an initially 
domain boundary (t/22 -~- 0 .5)  and an initial angle of 20 ° uniform distribution of micas. 
between the normal to the foliation and the line of Comparison of Figs. 14(a)& (c)shows that very large 
material particles that will become the domain boundary, errors arise from the assumptions involved but even so, the 
values of 6 up to just under 7 ° are developed. For distribution and maguitudes of strain shown in Fig. 14{c) 
shortening of 90°//0 normal to the domain boundary, (a2z are reasonable in that they are what many workers would 
= 0.1), and @ = 20 °, values of t~ no greater than 0.2 ° are consider to be geologically realistic. This analysis shows 
developed, however that such a criteria of'geological realism' is by no 

(ii) For ~) = 20 °, values of 6 as high as c. 25 ° can be means adequate in demonstrating that the assumptions 
common. The important point is that in this situation are valid. 
where the folding is appressed (interlimb angle of 60 °) Examination of specimens deformed less than the 
departures of 25 ° are common between the domain present one shows that these sharp-angled folds do not 
boundary and the 2~22-plane. form initially as conjugate kinks as in the situations 

(iii) For the moderate strains locally developed in the described by Paterson & Weiss (1966~ They form approxi- 
experimental fold, values of 6 of 20-30 ° are to be expected mately normal to the local direction of shortening but 
except for symmetrical situations where @ -- 0 ° a a d f  ~ = from then on are progressively rotated away from paral- 
0.5 occur (equivalent to the hinge of the fold), lelism with the 2xA2-principal plane if the history is non- 

The sequence oft-values portrayed for a given value of coaxial until the local values of shortening normal to the 
a22 ill Fig, 12(a) corresponds to a sequence of deformations kink boundary becomes appreciable when coincidence 
such as those shown in Fig. 12(b). This example cot- with the 2~ 22-plane is approached again. The history of 6 
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Fig. 13. Three deformed states corresponding tof" = 0.1,0.5 and 0.9 with a2~ = 0.9 in Fig. 12(a]. The sha l~  and orientations of 
the strain ellipses and the deformed square are shown. 
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MeasureO s'rroin orien't'al:ion STrain orien"ca'tion assuming domain STrain orien'ta'~ion assuming mica 
boundaries paraLLeL "to principal pre'f'errecl orien'ta'tion paraLLeL "to 
plane principal plane 

Fig. 14. (a) Measured orientation of )-1 'it'principal planes of strain in the specimen. The values of ~/21 are indicated for the 
regions A, B and C of Fig. 5. (b) Orientation of 2~ 2t-principal planes of strain assuming that kink domain boundaries are 
parallel to this principal plane• (c) Orientation of 2~ At -principal planes of strain assuming that the preferred orientation of (001) 
of mica is parallel to this plane. The values of ~/2~ are shown for the regions A, B and C of Fig. 5 assuming that the preferred 

orientation of mica has developed by a March mechanism and that the initial fabxic was random. 

for a non-coaxial deformation history is, therefore, similar even for moderate strains (for instance 50% shortening) 
to that shown in Fig. 15. The history is similar to that angular departures of perhaps 30 ° are to be expected. 
portrayed in Hobbs et al. (1976 fig. 5.24). 

Finally, we address the question:forfoliations that are 
defined by fabric discontinuities, what plane in the final 
strain ellipsoid does coincide with the foliation if it is not the Acknowledgements--This work was supported at various times by 
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APPENDIX 

The aim of this appendix is to define the relationship be twe~ the The dilation in the domain due to the deformation is 
orientation of the ).~22-principal plane of strain, for a statistically 
homogeneous deformation comprised of small planar domains of A-~-alia22 . (AI2) 
different strain, and the domain boundaries for various geometrical 
features of the domains. Compatibility of strain between domains 

Strain in a single domain For each of the domains ~ and ~ in Fig. I 1 we can write down 
transformations identical to (A3) and a deformation tensor given by 

In Fig. 16(a) the undeformed situation is illustrated where an incipient (A6). We can also calculate the values of the principal quadratic 
kink plane, PQ, is shown developing with its normal at an angle O to the elongations in each domain from (A9) and the angle between the kink 
foliation AB. In the deformed state (Fig. 16b) the kink plane normal plane and the maximum principal stretch in each domain from (All). 
makes an angle 0 with the enveloping surface, ab. The initial fight angle Since continuity is maintained across the kink plane boundary, 
PAQ has become ~,. Since the deformation is homogeneous, AP : AB = 
ap :ab and AQ :AD ffi aq :ad. Therefore, a~ l = a~ I (AI3} 

AQ :AP = cot O = (aq:ap) (AD :ad) (ab:AB), (All where the superscxipts refer to individual domains. 
Also, the dilation in each domain is given by an expression such as 

cos 0 S,b (AI2). So, combining (A12) and (A13) 
or cot O - - -  (A2) 

c o s ( y - - 0 )  S,d a~2A ~=az#zA ~. (AI4) 

where S,b, S,o are the stretches in the directions ofab and ad, respectively. Also, if A is now written as the dilation of the specimen as a whole and 
We adopt systems of Cartesian coordinates XI, X 2 and X 3 in the d', d# are the widths of ,v and// ,  then 

undeformed state and x~, x 2 and x 3 in the deformed state with XI, x~ A = p A  ~ + f # A  # (AI5) 
parallel to the kink plane, but normal to the kink axis, X2, x2 normal to 
the kink plane and Xs, x s parallel to the kink axis (Fig. 17). During wheref  ' = d ~/(d ~ + d #) 
deformation, X s, x 3 are principal axes of strain and a particular domain and f~ d~/(d" + d~). (A16) 
undergoes a progressive homogeneous shear parallel to the kink = 
boundary coupled with a homogeneous shortening parallel to x2 and a 

Mean deformation due to array of domains homogeneous extension parallel to xt, accomplished mainly by the 
deformation of salt aggregates between the mica flakes. The deformation 
for domain a may, therefore, be written as the following equation The problem of determining the mean strain from an array of fine- 
relating the deformed and undeformed coordinates of a particle: scale homogeneously deformed domains has been treated by Cobbold 

(1977) from which we obtain the following transformation describing the 
x I --- a11X 1 -6 al2X 2 (A3) mean deformation after using (A3) and (A4): 

x2 = a22X 2 xt = a, l  X 1 + [a~,,f~cot O ~ + a 2~zf#cot ~# - a l l  tan O] X2 

where ai2 = a22 tan 0 - al l  t anO (A4) x2 = [a'zzf ~ + a ~ z f ~ X  2. (Al71 

= a22 cot ~ b ' -  aal t an® Ifweputb~2=a~22f~cotdp~+a~22f#cotdp~-at~ t a n ®  (AI8) 
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and b22 - a ~ , f  ~ + a~2f  #. obtained using (A9) and (All). 

Then (AI7) b ~ o ~  

xl  = a t l X l  + b~2X2 In particular, 
(AI9) 

x2 = b22X2, similar to (A3) 
2b12622 

and the principal quadratic ©iongations for the region a a whole and the sin 26 := x/[(a~ 1 + b22 + b~2)2 2 -4atlb2212 2 • (A20) 
angle between the kink planes and the principal stretch, 6, can he 


